Markov Chain Monte Carlo Methods for Radiation Hybrid Mapping
نویسنده
چکیده
The ordering of genetic loci is central to genetic mapping at all levels. Markov chain Monte Carlo (MCMC) techniques can provide estimates of the posterior density of orders while accounting naturally for missing data, data errors, and unknown parameters. MCMC sampling schemes have been proposed for mapping problems such as linkage mapping and radiation hybrid mapping. The sampling schemes tend, however, to suffer from poor mixing caused by strong correlations between the model parameters. The method described here investigates the effect of using a modified sampling scheme, simulated tempering, on the mixing characteristics of the Markov chain. The method is illustrated by the analysis of haploid radiation hybrid mapping data; the principles are, however, applicable to a range of mapping problems. The results demonstrate that simulated tempering greatly improves the performance of the MCMC sampling scheme. For the radiation hybrid problem, the approach is probably not suitable for simultaneously ordering very large number of loci (> 100); it could, however, be useful for fine scale mapping of subsections of chromosomes.
منابع مشابه
Spatial count models on the number of unhealthy days in Tehran
Spatial count data is usually found in most sciences such as environmental science, meteorology, geology and medicine. Spatial generalized linear models based on poisson (poisson-lognormal spatial model) and binomial (binomial-logitnormal spatial model) distributions are often used to analyze discrete count data in which spatial correlation is observed. The likelihood function of these models i...
متن کاملNumerical Integrators for the Hybrid Monte Carlo Method
In an effort to avoid random-walk behaviour, many Markov Chain Monte Carlo methods use proposals based on dynamics related to the target distribution. The Hybrid Monte Carlo (HMC) is based on Hamiltonian dynamics and others the potential advantage of allowing global moves while retaining high probability acceptance. After reviewing the HMC method, I shall study strategies for the construction o...
متن کاملStudy of Preconditioners based on Markov Chain Monte Carlo Methods
Nowadays, analysis and design of novel scalable methods and algorithms for fundamental linear algebra problems such as solving Systems of Linear Algebraic Equations with focus on large scale systems is a subject of study. This research focuses on the study of novel mathematical methods and scalable algorithms for computationally intensive problems such as Monte Carlo and Hybrid Methods and Algo...
متن کاملInference about the Burr Type III Distribution under Type-II Hybrid Censored Data
This paper presents the statistical inference on the parameters of the Burr type III distribution, when the data are Type-II hybrid censored. The maximum likelihood estimators are developed for the unknown parameters using the EM algorithm method. We provided the observed Fisher information matrix using the missing information principle which is useful for constructing the asymptotic confidence...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of computational biology : a journal of computational molecular cell biology
دوره 4 4 شماره
صفحات -
تاریخ انتشار 1997